LAMBDAOBJECTS: Re-Aggregating
Storage and Execution for Cloud Computing

Kai Mast

University of Wisconsin-Madison

ABSTRACT

Existing cloud computing (or serverless) architectures pro-
vide convenient abstractions for application developers, but
exhibit high latencies and do not support strong consistency
guarantees. These limitations stem not only from the over-
heads due to virtualization, but also because storage and com-
pute layers are disaggregated.

We introduce LAMBDAOBJECTS; anew abstraction for server-
less systems where data and compute are co-located. Data
is encapsulated into objects, each associated with a set of
methods that allow accessing and modifying the data. Func-
tions then execute directly at the nodes the data is stored
at. Our early results demonstrate that this architecture pro-
vides lower latencies, while sacrificing some elasticity offered
by conventional serverless systems. In addition, LAMBDAOB-
JECTs provide strong consistency and enable efficient caching
mechanisms and fault-tolerance with low overhead.

CCS CONCEPTS

« Computer systems organization — Cloud computing,.

KEYWORDS

cloud computing, serverless, storage systems

ACM Reference Format:

Kai Mast, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
2022. LAMBDAOBJECTS: Re-Aggregating Storage and Execution for
Cloud Computing. In 14th ACM Workshop on Hot Topics in Storage
and File Systems (HotStorage ’22), June 27-28, 2022, Virtual Event,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3538643.3539751

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotStorage 22, June 27-28, 2022, Virtual Event, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9399-7/22/06....$15.00
https://doi.org/10.1145/3538643.3539751

Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau
University of Wisconsin-Madison

University of Wisconsin-Madison

1 INTRODUCTION

Recently, separating storage and compute layers, or even fully
disaggregating physical resources within a cluster [9, 35, 42,
51], has become a popular approach for building distributed
systems and their underlying infrastructure. Forgoing the
requirement to co-locate the various components of a system
allows for easier scaling of resources and ensures that failures
of one component do not affect other parts of the system.

A common application of disaggregation is serverless en-
vironments for which cloud providers, such as Amazon Web
Services [48] and Microsoft Azure [39], provide distinct com-
pute and storage layers. Serverless services allow uploading
functions, which can then be invoked without explicitly pro-
visioning servers for them to execute on. These functions
maintain state by interacting with a storage layer [6, 22, 38].
Each layer abstracts away the underlying physical or virtual
machines, ensures sufficient resources are allocated, and en-
sures failures of individual machines do not disrupt execution
or cause data loss.

Even though building applications in a serverless environ-
ment is fairly straightforward and allows application devel-
opers to sidestep many challenges associated with building
distributed systems, the technology has not received as much
adoption as one would expect. In fact, most large-scale ser-
vices still rely on self-hosted storage systems, such as Cock-
roachDB [32] or MongoDB [40], and compute layers that are
built from scratch and deployed as conventional macro- or
microservices [2, 11].

Thelow adoptionrate of serverless systems has two reasons.
First, serverless systems have high start-up latencies due to the
use of containers or virtual machines [43, 52]. These isolation
mechanisms are necessary to ensure failures, benign or Byzan-
tine [34], of one application do not affect other applications in
the same serverless environment. Second, separating storage
and compute layers, each with their own scaling and place-
ment mechanisms, makes it hard to provide strong consis-
tency guarantees without a significant impact on performance.
While recent work has made progress in reducing startup la-
tencies of serverless environments [3, 5, 13, 29, 43], overcom-
ing the limitations in storage consistency without a significant
redesign of how these systems work is much harder to achieve.

https://doi.org/10.1145/3538643.3539751
https://doi.org/10.1145/3538643.3539751
https://doi.org/10.1145/3538643.3539751

HotStorage '22, June 27-28, 2022, Virtual Event, USA

We propose LAMBDAOBJECTS: an abstraction for building
serverless applications where storage and compute are co-
located. Similar to object-oriented programming, this abstrac-
tion encapsulates data as objects and associates a set of func-
tions with that object. An object’s functions can only modify
data associated with the object itself, but can invoke func-
tions of other objects. Functions execute where the associated
object’s data is located, which provides strong consistency
with low overhead. Application logic is then implemented
as a graph of function calls as in other serverless systems.
This object-centered design enables modular modular appli-
cations that avoid expensive data transfers in many cases. We
also demonstrate how this model enables efficient sharding,
fault-tolerance, consistent caching, and linearizability.

Applications written against this abstraction are as easy
to develop and deploy as other serverless applications while
providing performance close to that of custom microservices
and strong consistency. From our early results, we believe
this architecture fits many applications that do not require
real-time performance (latencies below 1ms), but still need
to respond to user input quickly, such as most web applica-
tions. Strong consistency is a requirement for many projects
(e.g., financial applications) and generally eases application
development as it is easier to reason about [1]. This, in turn,
significantly increases the scope of what can be built as a
serverless application, i.e., without manual deployment.

The remainder of this paper gives an overview of this new
abstraction, its trade-offs, and early evaluation results. First,
we will discuss the current limitations of serverless system
the intuition behind LAMBDAOBJECTS in detail (§2). Then, we
specify this new data and compute model in more depth (§3),
detail LAMBDASTORE, a system that supports it (§4), and pro-
vide early results on how this implementation performs (§5).

2 BACKGROUND AND MOTIVATION

LAMBDAOBJECTS are designed with applications in mind that
require low latencies, high scalability and elasticity, and strong
consistency guarantees. We define low latencies as being be-
low 100ms, which is often considered the threshold at which
delays become noticable enough to affect the user experi-
ence [8]. Scalable systems are able to increase their throughput
without major changes to their architecture. Elastic systems
react to workload changes quickly by adding or removing
resources.

Strong consistency guarantees are important to a broad
range of applications. For example, a user might unfriend (or
even block) another user and expect that any post they create
after this will not be visible to that party. Without, at least,
causal consistency [4], the operation blocking the user might
be seen by some nodes in the system after they already pro-
cessed the post. Similarly, an application processing digital

Kai Mast, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

payments requires strong consistency to ensure a transaction
reads an up-to-date account balance and, as a result, does not
spend more money than is availabe.

In addition, we require an abstraction that makes it easy to
create new applications and does not waste physical resources.
Keeping the required developer effort low allows adding new
features quickly, reduces the maintaince burden, and lowers
the number of potential bugs. Ideally, a system always uses all
resources it has allocated and frees any unneeded resources,
which lowers cost for both the application developer and the
cloud provider.

A common example of applications with such requirements
are social network or microblogging services, such as Twitter.
Retwis [45], which is commonly used to benchmark storage
systems, implements a basic microblogging service where
users can follow other users and post status messages that
propagate to all their followers’ timelines. Recent work has
shown that even with efficient caching layers and without
wide-area communication, conventional serverless systems
still exhibit latencies of up 500ms for Retwis [55], indiciating
more work is needed.

2.1 Conventional Serverless

Serverless architectures fulfill our requirements of scalablility,
elasticity, and resource utilization as show in Table 1. At a high
level, they allow developers to upload self-contained functions
and abstract away physical or virtual machines used by the
application. The stored functions can be invoked by the appli-
cation’s frontend, in which case the cloud provider automat-
ically allocates the required resources. Functions can invoke
other functions and application logic is often implemented as
a directed acyclic graph of function calls, usually called a job.
Such cloud programming systems also provide mechanisms to
tolerate failures of functions and replicate data automatically.

Unfortunately, serverless systems currently do not meet
the requirements for strong consistency and low latencies for
two reasons. First, they employ containers or other virtualiza-
tion technologies to be able to co-locate multiple applications
within the same system. This can create a significant delay de-
pending on the underlying technologies. Second, as outlined
before, serverless systems are fully disaggregated which adds
additional delays due to network communications and makes
it hard to achieve strong consistency.

Recent Improvements. Previous work has proposed ways to
mitigate the high startup latencies of serverless environments.
First, caching or snapshotting virtual machines [3, 13, 58], con-
tainers [5,43], or the language runtime within a container [29],
each avoiding significant overheads compared to cold stars.
Second, Nightcore [29] converts serverless functions into
long-running microservices, which provides better scalability,
but slightly weaker isolation guarantees as multiple function
calls execute within the same container. Third, recent work

LAMBDAOBJECTS: Re-Aggregating Storage and Execution for Cloud Computing

HotStorage '22, June 27-28, 2022, Virtual Event, USA

LambdaObjects Custom (Micro-)services Conventional Serverless
Latency @@ Low (1-10ms) @@e@ Very Low (<1ms) @ High (>100ms)
Scalability eee High Implementation-Specific eooe High
Elasticity @ Medium e Low oo High
Consistency @@ Strong Implementation-Specific @ Weak
Developer Effort eee Low e High eoo Low
Resource Utilization eee High e Low eooe High

Table 1: Simplified comparison between LambdaObject’s aggregated serverless architecture, custom-built
(micro-)services, and conventional serverless architectures. Note, that these metrics are also influenced by the type

of application and the specific workload.

built serverless systems with lightweight isolation mecha-
nisms such as WebAssembly [53] to reduce startup latencies.

Recent work also showed that caches at the compute layer
can alleviate some storage latency and consistency limita-
tions [20, 36, 41, 54, 55]. In addition, Jia et al. [28] demon-
strated that consistent reads can be guaranteed using a shared
log. However, such mechanisms typically do not provide
strong consistency, i.e., linearizability [26]. Disaggregation
also makes it hard to provide data locality, which results in
frequent cache misses for such approaches. While weaker
consistency models or conflict-free data types are convenient
and useful for certain applications, they can introduce un-
desired or even safety-critical inconsistencies and create an
additional burden for application developers who have to
navigate these more complicated semantics. It is possible to
add transactional semantics to conventional serverless envi-
ronments [14, 60], but due to the limitations mentioned above,
such approaches incur high latencies and, for applications
with lock contention, low throughput.

2.2 Custom Micro- and Macroservices

Custom implementations are able to provide low latencies
and, potentially, strong consistency, but are expensive to build
and maintain. Instead of using an abstraction designed by a
cloud provider to fit many applications, they are built from
the ground up to support a specific application and the ex-
pected workload. Additionally, developers can use a storage
system in their application that support the desired consis-
tency guarantees. However, designing and building the entire
application stack and not just the serverless functions is more
time-intensive. Recently such custom systems are more com-
monly built as microservices, which make each component
of the system a separate service that can be developed, tested,
and deployed individually [15].

Custom services execute on dedicated resources, which
reduces startup delays but harms elasticity and can poten-
tially be costly. For example, a service might consist of a stor-
age node and one node for each of its microservices. This
means there is never a cold start as the microservices are
constantly running and can respond quickly when contacted.

However, picking such an allocation in advance requires some
knowledge about the expected workload and usually resultsin
over-provisioning of resources to be able to tolerate potential
high demand. Aside from potentially high cost due to over-
provisioning, manual deployment of services is costly. Orches-
tration tools like Kubernetes [19] can ease deployment, but it is
still move involved than a fully automated serverless solution.

2.3 ARe-design of Cloud Programming

The recent improvements to cloud programming are signif-
icant but not sufficient to reach our previously outlined goals
of latencies below 100ms and strong consistency. Instead of
incremental changes, we propose to rethink how serverless
applications are written and to redesign the structure of the
underlying system. A key observation that guides this re-
design is that significant work, e.g., ordering and replication
of requests, is replicated within both layers. Reducing this
duplication may not only improve performance, but also sim-
plify the design of a cloud computing infrastructure.
Application logic executing close to, or as part of, the stor-
age system are able to overcome limitations in latency and
consistency. Here, data can be retrieved quickly as the latency
between the compute environment and the storage backend is
minimal. Similarly, one can ensure strong consistency as the
likelihood of stale data being retrieved is significantly lower.
A new data and execution model eases the development for
serverless applications for such a co-located architecture.
LaMmBDAOBJECTS aim to provide lower latencies and stronger
consistency than conventional serverless and to provide sim-
ilar ease of development and deployment for application de-
velopers and administrators. However, co-locating data and
compute harms elasticity as data needs to be migrated when
adapting to workload changes, but a sharded datastore is still
inherently scalable. Additionally, a new data model makes
it harder for existing codebases to be ported to this abstrac-
tion, especially those requiring a POSIX-style API. Finally,
the LAMBDAOBJECTS model must still allow sharing resources
among applications to fully utilize the available resources.
To summarize, Table 1 outlines how the LAMBDAOBJECTS
abstraction aims to be a compromise between serverless and

HotStorage '22, June 27-28, 2022, Virtual Event, USA

custom implementations suitable for most applications. Con-
ventional serverless environments will most likely still be
more efficient for workloads with high variability or with
infrequent data-accesses, for example continuous integration
tasks or machine learning, and custom implementations are
still necessary for applications that require very low latencies.
In any case, which approach is the best depends highly on the
type of application and workload.

3 LAMBDAOBJECTS

LaMBDAOBJECTS are intended to implement a small piece of
functionality, e.g., a user authentication mechanism, that is
part of a larger application, e.g., an online store. Each of these
components can then be built and tested individually like con-
ventional microservices. Objects can then invoke methods
of other objects to compose more complex application logic.
However, unlike microservices, object method invocations
are short-lived and isolated from other invocations of the
same method.

Objects have access to their associated storage through a
key-value API and some utility functions in addition to exe-
cuting and invoking functions. This minimal API ensures a
small attack surface and supports different application types
and data models. For example, some applications may want
a storage system that provides access to raw, unstructured
data and others might require an abstraction more akin to
SQL. In the latter case packing and unpacking data can be
implemented within the runtime.

To ease application development, we introduce the notion
of object types. Each object type holds a set of functions in a
format specific to the implementation, e.g., as ELF binaries.
Object types also contain a set of fields, which are either a sin-
gle opaque piece of data or collection of data entries indexed
by a key. Objects can then be instantiated from these types.

3.1 Consistency Model

LaMBDAOBJECTS support invocation linearizability, which we
informally define as follows. First, data accesses and modifi-
cations within a single function invocation are atomic; either
all succeed or none. Second, function invocations are isolated;
partial writes of one invocation are not visible to other func-
tion invocations. Third, function invocations provide “real-
time” guarantees; if a functions call is successful, it is guaran-
teed that all following function calls will see its modifications.

These guarantees do not span across function calls to avoid
cyclic dependencies and aborts. In our current implementa-
tion, this means that invoking one function from another will
commit all changes of the first call before performing the
second. Thus, if a function f invokes another function f” in
the middle of its execution, the parts of f before and after in-
voking f” will be treated as two separate function invocations

Kai Mast, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

type User:
field name: String
field followers: List<ObjectId>

field timeline: List<(String, Time, String)>
pub func create_post(self, msg):

let time = get_time()

self.store_post(self.name, time, msg)

for oid in self.followers:

get_object (oid)
.store_post(self.name, time, msg)

pub func get_timeline(self, limit):

let result = []

self.timeline.iterate()

for result.len() < limit and iter.has_more():
result.push(iter.next())

let iter =

return result

func store_post(self, src, time, msg):

msg))

Listing 1: Implementation of ReTwis in pseudocode.
Low-level API calls are hidden behind a higher-level
abstraction Functionality that creates accounts or adds
followers is not shown.

self.timeline.push((src, time,

in the context of consistency. While similar to snapshot iso-
lation [10] at a first glance, this is a slightly weaker guarantee
as writes commit at the end of each function invocation not
at the end of the job.

We envision that future versions of the LAMBDAOBJECTS
model will support serializable transactions [44] spanning
multiple function calls, but this is out of the scope of this
workshop paper. Conveniently, embedding execution into
the database itself allows using proven transaction process-
ing protocols from existing database management systems
instead of having to develop an entirely new mechanism.

3.2 Application Example

We can implement the microblogging application from Sec-
tion 2 using LAMBDAOBJECTS in a straightforward way. Each
User objectholds alist of their posts, a set of all their followers,
as well as a timeline containing posts of all user’s they follow.
Listing 1 outlines a potential implementation of a User object
and its create_post method. The code omits blocking/fol-
lowing users and other functionality due to limited space.

create_post first generates a new post and the stores it
in the user’s and all its followers’ timelines. Updating many
follower timelines at once is done quickly by running the
store_post calls in parallel (not shown in the pseudocode).
Invocation linearizability prevents aborts due to concurrency,
so that requests will be processed quickly. This consistency

LAMBDAOBJECTS: Re-Aggregating Storage and Execution for Cloud Computing

property also ensures that causality is respected so that, for
example, blocked users will be removed from the follower list
before the new posts can be generated.

4 PROTOTYPE IMPLEMENTATION
4.1 Conventional Serverless Architectures

Before we discuss the design of a system that supports the
LaMBDAOBJECTS model, we outline how regular serverless
architecuters, such as OpenWhisk [17], work. Here, clients
(or client-facing frontends) interact with the compute layer
through a load balancer that distributes computation. This
load balancer must also log client requests in a durable way
to ensure that, in case of compute node failures, there will
always be a response generated [50]. For example, in the case
of OpenWhisk this replication mechanism is implemented
using Apache Kafka [18].

Compute nodes then interact with the storage backend over
the network. Thus, unless there is caching or a transactional
layer put in place, each storage access requires a network
round-trip. The storage backend itself is replicated to ensure
durability of data. If a lambda function invokes other lambda
functions during their execution, they will contact the load-
balancer again, introducing another round of indirection. This
avoids re-executing the entire workload if a single function
fails at the cost of increased latency.

4.2 LAMBDASTORE Architecture

We implemented LAMBDASTORE: a storage system that sup-
ports execution of methods compiled to WebAssembly [24].
We chose WebAssembly because, as previous work showed [53,
61], it haslow overhead and allows embedding untrusted code
directly into a process without sacrificing security. However,
a similar design could be achieved by placing containers or
virtual machines executing conventional binaries on the same
node as the relevant storage process.

WebAssembly provides software-based isolation and me-
tering. Runtimes compile untrusted code into trusted machine
code by adding safeguards to every memory access. Additional
checks canbe added to limit the amount of computation a func-
tion invocation is allowed to perform. The resulting machine
code can then be executed at almost native speed.

Storage nodes leverage the properties of LAMBDAOBJECTS
in two distinct ways. First, they represent the lowest form
of concurrency. Because functions only directly access data
within the same object, nodes can avoid write conflicts by not
scheduling two functions modifying data of the same object at
the same time. The abstraction, thus, allows the application de-
veloper to determine the granularity of locks. LAMBDASTORE
then combines function scheduling and concurrency control.

Second, objects are microshards [7]. Because their content
is self-contained, they can be migrated by themselves without

HotStorage '22, June 27-28, 2022, Virtual Event, USA

causing disruption to computation involving other objects. Mi-
crosharding, unlike, e.g., hash-based sharding [47, 56], allows
maintaining data locality. The LAMBDAOBJECTS abstraction
enables application developers to define what data “belongs
together” in a straightforward way.

4.2.1 Replicating LamMBDAOBJECTS. Replication is added to
this design in a straightforward way. We chose primary-
backup [12] as it provides low-latencies compared to, e.g.,
chain replication [57]. Functions that modify data are exe-
cuted at the primary and the results of the computation are
replicated to the backup nodes. Read-only functions can ex-
ecute at any replica to increase throughput.

Fault-tolerance is ensured through a cluster-wide coordi-
nation service. This service is replicated using Paxos [33] to
ensure availability at all times. If a node fails, the coordinator
will reconfigure the affected shards and notify all participants.
Clients, or nodes, waiting for a response from that shard will
reissue their request if needed. Thus, a function invocation
results in at most one network round-trip within the respon-
sible replica set. This design also obviates the need for an
additional logging service and scales well as the coordinator
is only involved during reconfigurations.

4.2.2 Consistent Caching. Even an efficient implementation
of a function execution environment can cause significant
overhead when invoked frequently, which can be avoided
using caching. Caching computation results in an environ-
ment where data and computation are not co-located can
easily result in inconsistencies when caches are not up-to-
date. However, in a co-located setting, storage nodes always
have access to the most recent state of the data.

For deterministic read-only functions, the storage system al-
lows caching results consistently. Here, storage nodes merely
record the output of a function, a hash of its input, and its
read set in the forms keys and value hashes. Nodes then only
re-execute such functions if the input or reads have changed.
This is similar to how MySQL handles deterministic stored
procedures [27].

5 PRELIMINARY EVALUATION

We compare our aggregated architecture against a disaggre-
gated design with separate compute and storage layers. For
both designs, we use WebAssembly as our isolation mecha-
nism to make the comparision fair. The disaggregated variant
isimplemented as a standalone process executing WebAssem-
bly binaries. In addition, the baseline uses our prototype as
its storage layer to ensure that implementation details of the
database itself does not skew the results. In both cases LAMB-
DASTORE uses LevelDB [21] to persist data.

We allocate one machine for compute and three machines
for storage. The storage machines forma replica set and do not

HotStorage '22, June 27-28, 2022, Virtual Event, USA

I Aggregated
I Disaggregated
55600

o
o

I
~

o
N

Throughput (jobs/sec; normalized)

Post GetTimeline Follow
Workload

Figure 1: Normalized throughput of the ReTwis
benchmark.

I Aggregated

35 I Disaggregated

30
w25
=20
§15
@

=10

Post GetTimeline Follow
Workload
Figure 2: Latencies of the ReTwis benchmark. Big bars
show median values and small bars the 99th percentile.

perform sharding. In the disaggregated variant, functions ex-
ecute on a dedicated compute node separate from the storage
nodes. For the aggregated variant, functions directly execute
at the primary storage node. In either case, clients directly
contact the executing node and there is no load balancer or
frontend. The experiment is run on Cloudlab [16], where
each machine is equipped with two Intel Xeon® Silver 4114
CPUs totalling 20 physical cores and 188 GiB of memory. All
machines are in the same physical location, and we do not
simulate a wide-area network.

We evaluated three different kinds of workloads for the
application described in Section 3: Post creates a new post
and updates all timelines of the account’s followers, GetTime-
line is a read-only task that returns the timeline for a specific
user, and Follow adds a new follower to an account. For the
aggregated variant, we enforce invocation linearizablity as
outlined before, while the disaggregated variant provides no
consistency guarantees. We set up 10,000 accounts and run
up to 100 concurrent client requests for all workloads, which
we found to yield the maximum throughput.

Figure 1 plots the total throughput of these workloads and
Figure 2 the latencies. The aggregated variant shows an in-
crease of at least 160% for throughput and a decrease of at
least 50% for median latency. Because all machines are located
within the same cluster, and because we do not add artificial

Kai Mast, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

network delays, latencies are generally low. We also observe
a higher variance in latencies for the disaggregated baseline
even when lowering the number of concurrent requests. A
single job in the Post workload requires multiple function
calls, the initial function call and one for each follower, which
results in lower throughput compared to the other workloads.

6 RELATED WORK

Previous work proposed embedding computation in the stor-
age layer. Many database management systems provide mech-
anisms for stored procedures [23, 27], which usually only sup-
port functions written in SQL not arbitrary binaries. Active
storage [46] and Willow [49] allow executing application code
within the storage device itself, e.g., on an SSD’s micropro-
cessor, but do not provide means to replicate or shard such
data. Biscuit [25] and YourSQL [30] allow executing parts
of a single application directly at the storage nodes. Zhang
et al. [61] first proposed embedding WebAssembly into the
storage layer, but their work did not address replication or
sharding of data. Finally, blockchains embed untrusted bina-
ries (usually compiled to custom bytecode or WebAssembly)
into their storage processes to support “smart contracts” [59].
Recent work also improved how data is passed between
serverless function invocations of the same job. Pocket [31]
provides an ephemeral storage layer to pass data between
functions efficiently. SONIC [37] decides between data pass-
ing strategies depending on the location of the other func-
tion(s) and the type of fanout, e.g., single, scatter, or broadcast.

7 CONCLUSION AND OPEN PROBLEMS

We introduced LAMBDAOBJECTS: a new abstraction to build
efficient and low-latency serverless applications. This paper
demonstrated how to build applications using this abstraction
and gave insights on how the underlying system architecture
improves upon conventional serverless architectures. Our
early results show promising performance improvements
over the disaggregated design. Future work has to investigate
how to efficiently shard and scale systems that support LAMB-
DAOBJECTS so that they provide similar elasticity guarantees
as other serverless systems. Additionally, one will need to add
consistency guarantees for transactions spanning multiple
function calls.

Acknowledgements. We thank the anonymous reviewers
and our shepherd Somali Chaterji for their helpful feedback.
We are also grateful to Tyler Caraza-Harter and Suyan Qu for
reviewing earlier versions of this paper.

This material was supported by funding from NSF CNS-
1838733, CNS-1763810, Google, VMware, Intel, Seagate, Sam-
sung, and Microsoft. The authors’ opinions and findings may
not reflect those of NSF or other institutions.

LAMBDAOBJECTS: Re-Aggregating Storage and Execution for Cloud Computing

REFERENCES

[1] Mike Curtiss (Google). Why you should pick strong consistency, when-
ever possible. https://cloud.google.com/blog/products/databases/why-

you-should-pick-strong-consistency-whenever-possible (Last
Accessed May 2022).
[2] Mazdak Hashemi (Twitter). The Infrastructure Behind Twitter: Scale.

https://blog.twitter.com/engineering/en_us/topics/infrastructure/

2017/the-infrastructure-behind-twitter-scale (Last Accessed March

2022).

Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa.

Firecracker: Lightweight Virtualization for Serverless Applications.

Symposium on Networked System Design and Implementation, pages

419-434, Santa Clara, California, February 2020.

[4] Mustaque Ahamad, Gil Neiger, Jame E. Burns, Prince Kohli, and
Phillip W. Hutto. Causal memory: Definitions, implementation, and
programming. Distributed Computing, 9(1):37-49, 1995.

[5] IstemiEkin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards
High-Performance Serverless Computing. USENIX Annual Technical
Conference, pages 923-935, Boston, Massachusetts, July 2018.

[6] Amazon. S3 Cloud Object Storage. https://aws.amazon.com/s3/ (Last
Accessed March 2022).

[7] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas,

Igor Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael

Stumm. Sharding the Shards: Managing Datastore Locality at Scale with

Akkio. Symposium on Operating System Design and Implementation,

pages 445-460, Carlsbad, California, October 2018.

Christian Attig, Nadine Rauh, Thomas Frank, and Josef F. Krems.

System latency guidelines then and now-is zero latency really

considered necessary? International Conference on Engineering

Psychology and Cognitive Ergonomics, pages 3-14, 2017.

Frank Bell, Raj Chirumamilla, Bhaskar B. Joshi, Bjorn Lindstrom, Ruchi

Soni, and Sameer Videkar. How Snowflake Compute Works. Snowflake

Essentials, pages 223-237, 2022.

Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.

O’Neil, and Patrick E. O’Neil. A Critique of ANSI SQL Isolation Levels.

SIGMOD International Conference on Management of Data, pages 1-10,

San Jose, California, May 1995.

Netflix Technology Blog. Netflix Platform Engineering — we’re just get-

ting started. http://netflixtechblog.com/neflix-platform-engineering-

were-just-getting-started-267f65c4d1a7 (Last Accessed March 2022).

[12] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg.

The primary-backup approach. Distributed systems, 2:199-216, 1993.

[13] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,

and Jonathan Appavoo. SEUSS: skip redundant paths to make

serverless fast. European Conference on Computer Systems, pages 32-1,

Heraklion, Greece, April 2020.

Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios

Katsifodimos. Distributed transactions on serverless stateful functions.

DEBS ’21: The 15th ACM International Conference on Distributed and

Event-based Systems, Virtual Event, Italy, June 28 - July 2, 2021, pages

31-42,2021.

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel

Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina.

Microservices: yesterday, today, and tomorrow. Present and ulterior

software engineering, pages 195-216, 2017.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-

son, Kirk Webb, Aditya Akella, Kuang-Ching Wang, Glenn Ricart,

Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

—
w
—_

—
o5}
[t

—
O
[

[10

[t

[11

—

(14

=

(15

=

[16

=

[17]
(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

HotStorage '22, June 27-28, 2022, Virtual Event, USA

Snigdhaswin Kar, and Prabodh Mishra. The Design and Operation of
CloudLab. USENIX Annual Technical Conference, pages 1-14, Renton,
Washington, July 2019.

Apache Software Foundation. OpenWhisk. https://openwhisk.apache.
org/ (Last Accessed March 2022).

Apache Software Foundation. OpenWhisk Architecture. https://cwiki.
apache.org/confluence/display/OPENWHISK/System+Architecture
(Last Accessed March 2022).

Linux Foundation. Kubernetes. https://kubernetes.io/ (Last Accessed
May 2022).

Alexander Fuerst and Prateek Sharma. FaasCache: keeping serverless
computing alive with greedy-dual caching. International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 386-400, Virtual, Anywhere, April 2021.

Sanjay Ghemawat and Jeff Dean. LevelDB. https://github.com/google/
leveldb (Last Accessed May 2022).

Google. Google Cloud Storage. https://cloud.google.com/storage/ (Last
Accessed March 2022).

The PostgresSQL Global Development Group. PostgresSQL
Stored Procedures. https://www.postgresql.org/docs/current/sql-
createprocedure. html (Last Accessed May 2022).

W3 WebAssembly Working Group. WebAssembly Specification.
https://webassembly.org/specs/ (Last Accessed March 2022).
Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee,
Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,
Sangyeun Cho, Jaeheon Jeong, and Duckhyun Chang. Biscuit: A
Framework for Near-Data Processing of Big Data Workloads. 43rd
ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2016, Seoul, South Korea, June 18-22, 2016, pages 153-165, 2016.
Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Transactions on Programming
Languages and Systems, 12(3):463-492, 1990.

Oracle Inc. MySQL Stored Procedures. https://dev.mysgl.com/doc/
refman/8.0/en/create-procedure.html (Last Accessed May 2022).
Zhipeng Jia and Emmett Witchel. Boki: Stateful Serverless Computing
with Shared Logs. Symposium on Operating Systems Principles, pages
691-707, Koblenz, Germany, November 2021.

Zhipeng Jia and Emmett Witchel. Nightcore: efficient and scalable
serverless computing for latency-sensitive, interactive microservices.
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 152-166, Virtual, Anywhere,
April 2021.

Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun Cho,
Daniel D. G. Lee, and Jaeheon Jeong. YourSQL: A High-Performance
Database System Leveraging In-Storage Computing. Proceedings of
the VLDB Endowment, 9(12):924-935, 2016.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. Pocket: Elastic Ephemeral Storage
for Serverless Analytics. Symposium on Operating System Design and
Implementation, pages 427-444, Carlsbad, California, October 2018.
Cockroach Labs. CockroachDB Documentation. https:
//www.cockroachlabs.com/docs/stable/ (Last Accessed March 2022).
Leslie Lamport. The Part-Time Parliament. ACM Transactions on
Computer Systems, 16(2):133-169, 1998.

Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The
Byzantine Generals Problem. ACM Transactions on Programming
Languages and Systems, 4(3):382-401, 1982.

Sergey Legtchenko, Hugh Williams, Kaveh Razavi, Austin Donnelly,
Richard Black, Andrew Douglas, Nathanael Cheriere, Daniel Fryer,
Kai Mast, Angela Demke Brown, Ana Klimovic, Andy Slowey, and
Antony I. T. Rowstron. Understanding Rack-Scale Disaggregated
Storage. Workshop on Hot Topics in Storage and File Systems, Santa

https://cloud.google.com/blog/products/databases/why-you-should-pick-strong-consistency-whenever-possible
https://cloud.google.com/blog/products/databases/why-you-should-pick-strong-consistency-whenever-possible
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale
https://aws.amazon.com/s3/
http://netflixtechblog.com/neflix-platform-engineering-were-just-getting-started-267f65c4d1a7
http://netflixtechblog.com/neflix-platform-engineering-were-just-getting-started-267f65c4d1a7
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://cwiki.apache.org/confluence/display/OPENWHISK/System+Architecture
https://cwiki.apache.org/confluence/display/OPENWHISK/System+Architecture
https://kubernetes.io/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://cloud.google.com/storage/
https://www.postgresql.org/docs/current/sql-createprocedure.html
https://www.postgresql.org/docs/current/sql-createprocedure.html
https://webassembly.org/specs/
https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html
https://www.cockroachlabs.com/docs/stable/
https://www.cockroachlabs.com/docs/stable/

HotStorage '22, June 27-28, 2022, Virtual Event, USA Kai Mast, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Clara, California, July 2017. [54] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E.

(36

=

—

=

= =

=

Taras Lykhenko, Rafael Soares, and Luis Rodrigues. FaaSTCC: efficient
transactional causal consistency for serverless computing. ACM/IFIP
Middleware Conference, pages 159-171, Quebec City, Canada, November
2021.

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic,
Somali Chaterji, and Saurabh Bagchi. SONIC: Application-aware Data
Passing for Chained Serverless Applications. USENIX Annual Technical
Conference, pages 285-301, Virtual, Anywhere, July 2021.

Microsoft. Azure Blob Storage. https://azure.microsoft.com/en-
us/services/storage/blobs/ (Last Accessed March 2022).

Microsoft. ~ Azure Functions. https://azure.microsoft.com/en-
us/services/functions/ (Last Accessed March 2022).

MongoDB. MongoDB Documentation. https://www.mongodb.com/
docs/ (Last Accessed March 2022).

Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim
Wood, Daniel Hagimont, Noél De Palma, Bernabé Batchakui, and Alain
Tchana. OFC: an opportunistic caching system for FaaS platforms.
European Conference on Computer Systems, pages 228-244, Edinburgh,
Scotland, April 2021.

Mihir Nanavati, Jake Wires, and Andrew Warfield. Decibel: Isolation
and Sharing in Disaggregated Rack-Scale Storage. Symposium on
Networked System Design and Implementation, pages 17-33, Boston,
Massachusetts, March 2017.

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. SOCK: Rapid
Task Provisioning with Serverless-Optimized Containers. USENLX
Annual Technical Conference, pages 57-70, Boston, Massachusetts, July

Gonzalez, Joseph M. Hellerstein, and Jose M. Faleiro. A fault-tolerance
shim for serverless computing. European Conference on Computer
Systems, pages 15-1, Heraklion, Greece, April 2020.

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. Cloudburst: Stateful Functions-as-a-Service. Proceedings
of the VLDB Endowment, 13(11):2438-2452, 2020.

Ton Stoica, Robert Tappan Morris, David R. Karger, M. Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. SIGCOMM Conference, pages 149-160, San
Diego, California, August 2001.

Robbert van Renesse and Fred B. Schneider. Chain Replication
for Supporting High Throughput and Availability. Symposium on
Operating System Design and Implementation, pages 91-104, San
Francisco, California, December 2004.

Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran
Yang, Huiba Li, Rui Du, and Yue Cheng. FaaSNet: Scalable and Fast
Provisioning of Custom Serverless Container Runtimes at Alibaba
Cloud Function Compute. USENIX Annual Technical Conference, pages
443-457, Virtual, Anywhere, July 2021.

Gavin Wood. Ethereum: A Secure Decentralised Generalised
Transaction Ledger. Ethereum Yellowpaper, 2014.

Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel,
and Vincent Liu. Fault-tolerant and transactional stateful serverless
workflows. Symposium on Operating System Design and Implementation,
pages 1187-1204, Banff, Canada, November 2020.

Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Narrowing
the Gap Between Serverless and its State with Storage Functions.

2018. Proceedings of the ACM Symposium on Cloud Computing, SoCC 2019,
Christos H. Papadimitriou. The serializability of concurrent database Santa Cruz, CA, USA, November 20-23, 2019, pages 1-12, 2019.
updates. Journal of the ACM, 26(4):631-653, 1979.

[45] Redis. ReTwis Documentation. https://redis.io/docs/reference/
patterns/twitter-clone/ (Last Accessed March 2022).

Erik Riedel, Garth A. Gibson, and Christos Faloutsos. Active Storage for
Large-Scale Data Mining and Multimedia. International Conference on
Very Large Data Bases, pages 62-73, New York, New York, August 1998.
Antony L. T. Rowstron and Peter Druschel. Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale Peer-to-Peer
Systems. ACM/IFIP Middleware Conference, pages 329-350, Heidelberg,
Germany, November 2001.

Amazon Web Services. AWS Lambda. https://aws.amazon.com/lambda/
(Last Accessed March 2022).

Sudharsan Seshadri, Mark Gahagan, Meenakshi Sundaram Bhaskaran,
Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. Wil-
low: A User-Programmable SSD. Symposium on Operating System Design
and Implementation, pages 67-80, Broomfield, Colorado, October 2014.
[50] Mohammad Shahrad, Rodrigo Fonseca, Iiiigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness,
Mark Russinovich, and Ricardo Bianchini. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. USENIX Annual Technical Conference, pages 205-218,
Virtual, Anywhere, July 2020.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A
Disseminated, Distributed OS for Hardware Resource Disaggregation.
USENIX Annual Technical Conference, Renton, Washington, July 2019.
Mikhail Shilkov. Comparison of Cold Starts in Serverless Functions
across AWS, Azure, and GCP. https://mikhail.io/serverless/coldstarts/
big3/ (Last Accessed May 2022).

Simon Shillaker and Peter R. Pietzuch. Faasm: Lightweight Isolation
for Efficient Stateful Serverless Computing. USENIX Annual Technical
Conference, pages 419-433, Virtual, Anywhere, July 2020.

(44

=

(46

—

[47

—

[48

—

[49

—

(51

—

[52

—

[53

—_

https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.mongodb.com/docs/
https://www.mongodb.com/docs/
https://redis.io/docs/reference/patterns/twitter-clone/
https://redis.io/docs/reference/patterns/twitter-clone/
https://aws.amazon.com/lambda/
https://mikhail.io/serverless/coldstarts/big3/
https://mikhail.io/serverless/coldstarts/big3/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Conventional Serverless
	2.2 Custom Micro- and Macroservices
	2.3 A Re-design of Cloud Programming

	3 LambdaObjects
	3.1 Consistency Model
	3.2 Application Example

	4 Prototype Implementation
	4.1 Conventional Serverless Architectures
	4.2 LambdaStore Architecture

	5 Preliminary Evaluation
	6 Related Work
	7 Conclusion and Open Problems
	References

